Litters of photosynthetically divergent grasses exhibitdifferential metabolic responses to warming and elevated CO2

نویسندگان

  • VIDYA SUSEELA
  • DANIELLA TRIEBWASSER-FREESE
  • NORA LINSCHEID
  • JACK A. MORGAN
  • NISHANTH THARAYIL
چکیده

Climatic stress such as warming would alter physiological pathways in plants leading to changes in tissue chemistry. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We studied the composition of structural and non-structural metabolites in senesced tissues of Bouteloua gracilis (C4) and Pascopyrum smithii (C3) at the Prairie Heating and CO2 Enrichment experiment, Wyoming, USA. We hypothesized that P. smithii and B. gracilis would respond to unfavorable global change factors by producing structural metabolites and osmoregulatory compounds that are necessary to combat stress. However, due to the inherent variation in the tolerance of their photosynthetic pathways to warming and CO2, we hypothesized that these species will exhibit differential response under different combinations of warming and CO2 conditions. Due to a lower thermo-tolerance of the C4 photosynthesis we expected B. gracilis to exhibit a greater metabolic response under warming with ambient CO2 (cT) and P. smithii to exhibit a similar response under warming combined with elevated CO2 (CT). Our hypothesis was supported by the differential response of structural compounds in these two species, where cT increased the content of lignin and cuticular-matrix in B. gracilis. In P. smithii a similar response was observed in plants exposed to CT, possibly due to the partial alleviation of moisture stress. With warming, the total cell-wall bound phenolic acids that cross link polysaccharides to lignins increased in B. gracilis and decreased in P. smithii, indicating a potentially adaptive response of C4 pathway to warming alone. Similarly, in B. gracilis, extractable polar metabolites such as sugars and phenolic acids increased with the main effect of warming. Conversely, in P. smithii, only sugars showed a higher abundance in plants exposed to warming treatments indicating that warming alone might be metabolically too disruptive for the C3 photosynthetic pathway. Here we show for the first time, that along with traditionally probed extractable metabolites, warming and elevated CO2 differentially influence the structural metabolites in litters of photosynthetically divergent grass species. If these unique metabolite responses occur in other species of similar functional types, this could potentially alter carbon cycling in grasslands due to the varying degradability of these litters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time.

It is unclear how elevated CO2 (eCO2 ) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. Th...

متن کامل

Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe

Six open-top chambers were installed on the shortgrass steppe in north-eastern Colorado, USA from late March until mid-October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 mmol mol (elevated treatment), and three noncham...

متن کامل

Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming.

Terrestrial plant and soil respiration, or ecosystem respiration (Reco ), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007-2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applie...

متن کامل

Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO<sub>2</sub> and warming

Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014